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A point-charge representation of Frost-model wave functions is derived from a symmetry-adapted 
perturbation theoretic expansion. The new point-charge model is simpler than those suggested pre- 
viously yet gives good estimates of first-order molecular properties. The treatment can easily be 
extended to deal with second-order properties and, when this is done, formulae similar to those of the 
Drude theory are obtained. Using these formulae, theoretical expressions for the refractive indices of 
methane, ethane and water are computed and are in reasonable accord with experiment for the two 
hydrocarbons but less satisfactory for water. 

Key words: Frost-model wave functions - Point-charge models Refractive indices 

1. Introduction 

Symmetry-adapted perturbation theory has been used in a number  of  contexts 
for several years now [1-5].  Recently we have shown how it can be extended to 
deal with two perturbations [6] and how the extended theory can be applied to 
Frost-model wave functions [7]. This last application leads to almost trivially 
simple methods for computing first and second-order properties of  molecules; 
such computed values are in quite satisfactory agreement with experimental values. 

For calculating the electrostatic potential due to a molecule and the electro- 
static interaction between pairs of  molecules there are great advantages to be 
gained by replacing the electronic charge distribution by a number  of  point charges. 
The most  elegant treatment of  this procedure has been given by Hall [8] who 
showed that from Hartree-Fock wave functions based on a basis set of  floating 
spherical Gaussian orbitals (FSGOs) an extremely accurate point-charge model 
could be set up. The disadvantage of Hall 's  method is that a large number of  point 
charges are needed but Shipman [9] has introduced what can be considered as an 
approximate version of Hall 's  theory which reduces the number  of  point charges to 
manageable proportions. 

Both Shipman's and Hall 's  methods begin with the conventional expression 
for the molecular first-order density matrix. If, however, the symmetry-adapted 
perturbation theory referred to above is applied to Frost-model wave functions 
the leading term in the first-order density matrix is much simpler than the con- 
ventional expression. The main purpose of this paper  is to show that, as a con- 
sequence, it is possible to obtain from this a much simpler point-charge model. 
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Aside from its simplicity, the new point-charge model based on the symmetry- 
adapted perturbation expansion has the advantage that classical mechanics can 
be used to determine the effect of external perturbations on the charges. This 
allows second-order properties in addition to first-order ones to be considered. 
As will be seen, the extended model is very similar in form to the Drude model [10] 
but, unlike the Drude method itself, the parameters involved are obtained from 
ab initio wave functions and do not have to be found empirically. 

2. First-Order Molecular Properties 

Suppose W is a symmetric operator whose expectation value with respect to 
the molecular wave function ~ gives the required first-order property W1 : 

so that, for example, if W represents the effect of a static electric field on the 
molecule, W1 will be the molecular dipole moment. The Frost-model [11] for a 
2n-electron molecule assumes that ~ can be adequately approximated by an 
antisymmetrized product of n Gaussian functions i.e. 

~ = A ~ b  (2) 

where the antisymmetrizer, A, is defined so that A 2 =A and �9 is the product 
function 

= l~I qgi(2/)q~i(2i- 1)c~(2i)fl(2i- 1) (3) 
i = 1  

with q~ the ith Gaussian. In the conventional approach, W1 in (1) is replaced by 
the expectation value of W with respect to ~ i.e. 

" W1 ~ Wol = (@[ W[l[I)/(O[I]l) = (t~l WAlrb)/(~[Al~b) (4) 

As a rule W will be the sum of one-electron spin-independent operators: 
2n 

w =  Y, w(r,  
i = 1  

It then follows that Wol can be expressed in terms of the electron density p(r) of ~: 

p(r) = 2 Z T~,~bs(r)~b,(r) (6) 
S~lt 

where, if S is the matrix whose r,s element S,~ is the overlap integral between the 
two Gaussians q~s and ~b t, then T = S-  1. The result is 

Wo 1 = ~ w(r)p(r)dr (7) 

Recently [7] we have shown how symmetry-adapted perturbation theory can 
be used with Frost-model wave functions to calculate molecular properties. When 
the method is applied to first-order properties, the leading term in the perturbation 
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expansion of W~ is given by the expectation value of W with respect to the product 
function 4. If  the higher-order terms can be ignored, we have that: 

w1-- = (41 wl > (8) 

In the case when W takes the form of Eq. (5), Woi can be written in a form similar 
to Wol. To do this we introduce the electron density ~(r) associated with 4 and 
defined by 

~(r) = 2 ~ ~fi~(r)~(r) (9) 
S 

and Wol is then given by 

Wo i = S w(r)fi(r)dr (10) 

One interpretation of Eqs. (9) and (10) is that they are obtained from (6) and (7) 
by assuming that it is a reasonable approximation to replace the overlap matrix S 
and, hence, T by the unit matrix. This is not an interpretation we would wish to 
encourage but it is of some practical use to note that any formulae derived from (7) 
can be made to apply to (10) simply by replacing S with the unit matrix. For ex- 
ample, Tait and Hall [-12] give an extensive set of formulae for calculating first- 
order molecular properties from Gaussian wave functions. Putting their Pst equal 
to Tst gives the formulae relevant to Frost-model wave functions, the property 
being computed via Eq. (7). By putting PstSst = ~st the results obtainable via Eq. 
(10) can be found. It follows from this, of course, that Wol and Wol will give 
similar values if TstS~t,.~ 3st. But this is not a necessary condition, we suspect that 
more often than not the near equality of Wol and W01 is due to partial cancellation 
of the non-zero off-diagonal terms. 

Neither Woi nor the more conventional expression Wol will actually equal W~ 
and both ought to be corrected by the addition of extra terms. For Wox these must 
correct for the fact that ~ is only an approximation to the true molecular wave 
function 7L For W0~ two types of correction must be applied, the first repairs the 
lack of antisymmetry in 4 and the second allows for the fact that the zero-order 
Hamiltonian used in the perturbation theory is not the molecular Hamiltonian. 
Of course it is not a practical possibility to calculate these correcting terms either 
for Woi or Wol so that the utility of both methods depends on whether or not (7) 
or (10) are reasonable approximations to W~. 

To examine this we can take the value of W~ to be the same as the experimental 
value of the particular property where accurate experimental values are available. 
Alternatively W~ can be assumed to be the same as the most accurate theoretical 
value, found, as a rule, from good quality Hartree-Fock wave functions. 

In Table 1 we compare values of dipole and quadrupole moments of a few 
small molecules found by using (7) and (10) with the best estimates of Wi. It might 
have been expected that (7) would always give more satisfactory results than (10) 
but this is by no means the case. For in most cases the results using Wol and Wol 
are comparable and for those that are not Wol is as likely to be the more accurate 
as Wol is. Thus it would seem that we do as well by using the unconventional 
formula (10) as by using the conventional one (7). 
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Table 1. Comparison of some first-order properties computed from (7) and (10) with "exact" values 

Molecule Property Theoretical value a ,,exact,,a, b 
Wol Wol 

LiH ~ Dipole moment a - 6.28 - 6.11 ( -)5.88 ~ 
Quadrupole moment f QII -5.42 -5.21 -7.34% -4.15 h, -4.35 i 

Q• 2.71 2.61 3.67% 2.08 h, 2.18 i 

C2H6 j Quadrupole moment f QII -0.95 -0.62 -0.8•  k 
Q• 0.48 0.31 0.4_0.1 k 

H20(C) i'm Dipole moment m, Pzz 1.83 1.58 (+)1.85 n 
Quadrupole moment TM, Q~ 3.01 2.93 2.63 p, 1.6+0.6 q 

Qyr -3.45 -3.13 -2.50 p, -2 .0•  q 
Q= 0.44 0.20 -0.13 p, 0.4_0.4 q 

HzO(S)I, m Dipole moment m, p= 2.27 1.85 ( +)1.85 n 
Quadrupole moment m, Qx~ 3.23 3.05 2.63 p, 1.6 _+ 0.6 q 

Qyy -3.59 -3.23 -2.50 p, -2 .0+0.6  q 
Qzz 0.36 0.18 -0.13% 0.4+0.4 q 

a Dipole moments in debyes, quadrupole moments in buckinghams. 
b Either experimental or accurate Hartree-Fock values. 

Wave function of Ref. [12]. 
Positive direction Li to H. 

~ Experimental value, Ref. [14]. 
f QII, Q• refer to components parallel and perpendicular to molecular axis, origin at centre of mass. 
g Theoretical value, Ref. [15]. 
h Theoretical value, Ref. [16]. 
i Theoretical value, Ref. [17]. 
J Geometry: carbon atoms at (0, 0, __. 1.4579) (units are bohrs), one hydrogen at (1.9616, 0, -2.157) 
the others being given by symmetry. Inner shell exponents, 9.30054 a.u. ; CH bond exponents, 0.35511 
a.u. ; CC bond exponent, 0.35267 a.u. One of the CH bond orbitals centered at (1.2002, 0, - 1.8815), 
the remainder being given by symmetry. Wavefunction of D. Martin. 

k Experimental value, Ref. [18]. 
For details of the Frost-model wave functions see the appendix. 

m X and z axes in molecular plane, z axis bisects HOH angle with positive direction from O towards the 
H atoms. Quadrupole moments relative to centre of mass. 

n Experimental value, Ref. [19]. 
P Experimental value, Ref. [20]. 
q Experimental value, Ref. [21]. 

A f inal  p o i n t  c o n c e r n s  the  F r o s t - m o d e l  w a v e  f u n c t i o n s  fo r  wa te r .  I t  is wel l -  

k n o w n  t h a t  t he  F r o s t  m o d e l  does  n o t  w o r k  p r o p e r l y  fo r  w a t e r  [13]  o w i n g  to  the  

p r o p e n s i t y  o f  the  l o n e - p a i r  o rb i t a l s  to  coa le sce  w i t h  the  inner - she l l  o x y g e n  orb i ta l .  

N o r m a l l y ,  t he re fo re ,  the  p o s i t i o n s  o f  the  l o n e - p a i r  F S G O ' s  a r e  f ixed by  s o m e  

sub jec t ive  c r i t e r ion .  S ince  we  a re  m a i n l y  i n t e r e s t ed  in e lec t r ica l  p rope r t i e s  we  

c h o o s e  to  fix these  pos i t i ons  so tha t  a g o o d  m o l e c u l a r  d i p o l e  m o m e n t  is o b t a i n e d .  

This ,  o f  course ,  gives  t w o  poss ib l e  cho ices  d e p e n d i n g  on  w h e t h e r  (7) o r  (10) is u sed  

to c o m p u t e  t he  d i p o l e  m o m e n t .  T h u s  we use t w o  d i f fe ren t  F r o s t - m 0 d e l  w a v e  

f u n c t i o n s  fo r  w a t e r ;  the  first,  H 2 0 ( C ) ,  gives a g o o d  va lue  o f  t he  d i p o l e  m o m e n t  v ia  

t he  c o n v e n t i o n a l  f o r m u l a  (7) and  the  s e c o n d  H 2 0 ( S )  g ives  a g o o d  d i p o l e  m o m e n t  
w h e n  the  s y m m e t r y - a d a p t e d  p e r t u r b a t i o n  e x p a n s i o n  f o r m u l a  (10) is used.  F u r t h e r  

de ta i l s  o f  these  w a v e  f u n c t i o n s  a re  g iven  in t he  A p p e n d i x .  
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3. Point-Charge Models 

Hall's point-charge model [-8, 12] when applied to Frost-type wave functions 
consists of replacing (6) by 

p*(r) = 2 ~, STt 1Sst6(r-Rst) (11) 
S, t 

where Rst = (a,R~ + atRt)/(as + at); as,at, Rs,Rt being the exponents and centres of 
the Gaussians r and s. Eq. (11) represents the charge density as due to n point 
charges of  magnitude {2St71Stt} at the centres of the Gaussians and �89 
point charges of magnitude {4S7t 1S~t} positioned between the Gaussian centres. 
All told, therefore, there are �89 + 1) point charges. 

The main properties of this point-charge model are as follows: 

a) The total electronic charge, 2n, and the electronic dipole moment /~e are 
conserved i.e. 

2n = ~ p(r)dr = ~ p*(r)dr 

pe = ~ rp(r)dr = ~ rp*(r)dr =/z* 

where we follow Tait and Hall [-12] in using symbols superscripted with an 
asterisk to represent point-charge model values. 

b) Off-diagonal elements of the quadrupole tensor Q are of the form Qxy = Q'y, 
-Qyz but there significant differences between diagonal Qx~ = Q:,z, Q,~ are 

elements computed using (6) and (11) i.e. Qxx :# Q*~ etc., however the error 
in Q'x, Qy*, Q*z is constant. For higher moments, the use of (11) leads to 
quite large errors which in general increase with distance. 

c) The electronic part of the potential V(r), the components of the electric field 
E(r) and the components q(r) of the electronic field gradient tensor, all 
evaluated at the point r, are such that the differences V -  V*, E - E * ,  q - q *  
decrease exponentially at large distances. The error decreases more rapidly 
than the actual value. 

Clearly we can make a similar point-charge approximation to fi(r) by means of  
the following expression: 

~*(r) = ~ 26(r-  Rs) (12) 
s 

which represents the charge density as due to n point charges of magnitude two 
units positioned at the Gaussian centres. We note that there is a considerable 
simplification in going from (11) to (12) since the number of charges is reduced 
from ln(n + 1) to n. It is easy to show that properties (a), (b), (c) of  the point-charge 
model represented by Eq. (11) also apply to that represented by (12). 

An alternative point-charge model, which also uses n charges positioned at 
each Gaussian centre has been introduced by Shipman [-9]. Shipman's model, 
however, can be regarded as an approximation to Hall's model in which the 
�89 1) off-centre charges are redistributed onto the Gaussian centres. 

Since it is to be expected that the use of the point-charge density (12) for com- 
puting first-order properties will give the same qualitative agreement with the 
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Table 2. LiH potential from various models" 

DiStance from 
Lithium atom in 
bohrs 

V V* F V* V ~ 

1.2 0.491008 0 .482258 0 .477708 0.468571 0.480649 
2.4 0.129874 0 .128673 0 .125853 0 .124670 0.128097 
3.6 0.049057 0 .048996 0 .047451 0 .047392 0.048757 
4.8 0.022969 0 .022968 0 .022194  0 .022193 0.022851 
6.0 0.012391 0 .012391 0 .011964 0 .011964 0.012326 
7.2 0.007383 0 .007383 0 .007126 0 .007126 0.007344 

a Potential in atomic units. For explanation of symbols see text. 

results found from expression (10) as Hall's point-charge model gives with respect 
to results found from expression (7), we see no advantage in making a large number 
of  comparisons such as was done by Tait and Hall [12]. Instead we simply note 
that the conclusions reached by the latter authors will also hold for the new point- 
charge model. 

However, it does seem worthwhile to make at least one comparison between 
the various point-charge models. We do this for the popular example of  the 
electrostatic potential of  the LiH molecule at points on a line passing through the 
lithium atom and perpendicular to the molecular axis. The results are shown in 
Table 2. In the table V refers to the conventional potential obtained from p(r), 
V* is Hall's point-charge potential, V is the potential using ~(r), V* is the point- 
charge potential from ~*(r) (Eq. (12)) and V s is Shipman's point-charge potential. 
As is to be expected V, I/'* and V s are in good agreement with V* closer to Vthan 
V s is. V* is in good agreement with V again as expected. V and Vdiffer by about 
4~o, Vbeing smaller, and V* and V* differ by about  the same amount. The potential 
obtained from Frost-model wave functions can hardly be very accurate but one 
hopes that the qualitative features of the potential are correct. As far as this is 
concerned we feel that V and V and, hence, V* and V* will usually exhibit the 
same qualitative behaviour so that whichever is found the most convenient can 
be used. 

4. The Classical Equation of Motion 

The purpose of  this section is to relate the point-charge model represented by 
~* to the classical theory of  the electron. To do this we note that the product 
function �9 which is used as zero-order function in the symmetry-adapted per- 
turbation theory is an eigenfunction of the Hamiltonian Ho, 

H o =  {h~(2s)+hs(2s-  1)} (13) 
s = l  

which is a sum of  one-electron harmonic oscillator Hamiltonians 

hs = - � 8 9  z + 2=~lr~! a (14) 

where r, = r -  R,. 
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The classical Hamiltonian which is the analogue of (14) will be just the sum of 
Hamiltonians for classical oscillators and, hence, for the 2s-electron the classical 
path with zero phases will be given by 

ff(2s) = R, + A~ cos f~t (15) 

where A~ is the amplitude of the oscillation and f~=  2e~ is the frequency. The 
classical charge-density for the 2n-electron system will be given by 

pC(r,t) = 2 ~ 6 ( r - R ~ - A ~  cos f2~t) (16) 
S 

which, of course, is time dependent. This time dependence can be removed by 
setting A~=0 s =  1 . . .n  which implies a set of stationary point charges. Not 
surprisingly this leads to pC= f i ,  so that (12) is equivalent to the classical charge 
density of n stationary point charges. 

5. Second-Order Properties 

The symmetry-adapted perturbation theory which leads to Eq. (8) for the 
first-order property W1 can also be applied to finding second-order properties. 
The result is that 

W 2 ~ Wo2 =�89 ~ w(r)~'(r)dr (17) 

where ~'(r) represents the first-order change in fi(r) due to the perturbation W. 
The classical equations of motion can be used to find fi'(r) and thus the point- 
charge model can be extended so as to compute second-order properties. 

As an example consider the case where the molecule is perturbed by a static 
electric field E so that the equation of motion of the 2s and (2s -  1) electrons is 

so that 

d2rs t-4~Zrs = E (18) 
d t  2 

1 
r(2s) = Rs + w-37 E (19) 

on setting the amplitude A~ for the harmonic terms equal to zero. The total density 
will therefore be 

and hence 

(20) 

(21) 
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Since w(r)= - r  and the polarizability ~ satisfies W2 = - I ~ E ,  it follows that 

i.e. 1 = 3  (23) 
s 

This agrees with the result of Frost-model perturbation theory [7]. 
If  the applied field is time dependent the equation of  motion becomes 

dar '  t- 4~r~ = E cos cot (24) 
dt 2 

where co is the frequency of the field. It follows that 

1 
r(2s) = r~-~ 4~ 2 _ co~ E cos cot (25) 

Consequently the frequency-dependent polarizability is given by 

1 
~(co) = 2 2 __(D2 (26) 

COs 

2 2 where co~ = 4~ .  When co = 0, Eq. (26), naturally enough, reduces to the frequency 
independent case given by Eq. (23). 

Both these examples are familiar. The equations correspond to those used in 
the Drude theory [10]. Thus we can conclude that when the point-charge model is 
extended to allow second-order properties to be computed one arrives naturally 
at the Drude model. Howeverl there are important differences to be borne in mind. 
In the Drude theory, as usually presented, the oscillator potential is taken to be 
- kr~ where k is an empirical parameter. In the present treatment k = 4 ~  where c~ 
is not an empirical parameter but an ab initio one obtained directly from the Frost- 
model wave function. Moreover, in the Drude theory, the oscillators are either the 
atoms in the molecule or, more usually, the molecule is assumed to oscillate as if it 
were a single particle, so that there is just one centre and one frequency of  oscillation. 
The point-charge model has n particles oscillating with different frequencies (al- 
though some may be equal due to symmetry) about different centres whose positions 
are obtained from ab initio calculations. Thus the present interpretation is much 
less empirical than the Drude model itself. 

To illustrate the use of Eq. (26) consider the refractive indices of  water, methane 
and ethane. For  small frequencies where n ~  1 the Clausius-Mossotti relation 
simplifies to 

n -  1 ~ 2rM~(co) (27) 

where d is the number density of the gas. As a rule experimental values are fitted to 
an expression of the form 

C 
n -  1 = 2 2 (28) 

~)0--V 
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Table 3. Values of  C and vg 

229 

C a •2b 

Molecule This paper Ref. [22] Experiment r This paper Ref. [22] Experiment c 

CH4 5.56 5.42 5.03 0.143 0.140 0.117 
C2H 6 9.73 10.28 8.49 0.142 0.148 0.114 
H20(C)  5.56 3.07 2.63 0.335 0.153 0.107 
H20(S  ) 5.55 3.07 2.63 0.338 0.153 0.107 

a Units  of  1027 cm 2. b Units  of  1022 cm -2. c Ref. [23]. 

and empirical values of  C and v 2 are given in Table 3. The frequency dependent 
polarizability c~(~) is a sum of a number  of terms like (28) but this sum can be 
approximated by just one term. The theoretical values of  C and v 2 obtained in this 
way from Frost-model wave functions are given in Table 3, as also are values 
found from more accurate wave functions [22]. The table shows reasonable 
agreement between theory and experiment for methane and ethane but for Water 
the Frost-model results appear to be wrong by a factor of  two. 

Acknowledgement. One of us (J. A. Yoffe) was supported by an S.R.C. research studentship. 

Appendix : Frost Model for Water 

To obtain Frost-model wave functions which give a good dipole moment  for water we fix the 
nuclear geometry so that  OH = 1.808 bohrs and the HOH angle is 104.5 ~ The lone-pair orbitals are 
centred on lines in the y-z  plane passing through the oxygen atom, the angle between the two lines being 
110 ~ (for the x,y,z directions see footnote to Table 1 ; the origin, however, is taken at the oxygen nucleus). 
The lone-pair orbitats were fixed for various values of  z and all the exponents together with the OH 
bonding orbital positions were optimized. As can be seen from the selection of results given in Table 4 
the energies do not  vary very much  but the dipole moments  do. The result using W01 (Eq. 10) is con- 
sistently closer to the experimental value than Wol except in the rather uncertain region very close to 
the origin, where the overlap matrix is nearly singular due to the lone pair orbitals almost coalescing 
with the oxygen inner-shell orbital. Because of this, near the origin the results do appear to be rather 
random and there are large changes in the dipole values for both W01 and W01 over small changes in z. 
Moreover, we have found difficulty in optimizing the wave function since the energy surface appears to 
be rather flat with a number  of shallow minima. 

In spite of  these problems we find that when z = - 0.005 bohrs we obtain a wave function for which 

Table 4. Dipole moment  and energy of H 2 0  

z-component  of  Dipole moment  b Energy c 
the lone pairs a W01 W--o 1 

--0.05 2.42 2.10 -64 .2314  
- 0 . 0 3  2.37 1.99 -64 .2339 
-0 .01  2.27 1.85 -64 .2345 
- 0.008 2.39 1.90 - 64.2341 
- 0.005 1.83 1.58 - 64.2382 

a In bohrs. 
b In debyes, experimental value = 1.85 (Ref. [19]). 
c In hartrees, Hartree-Fock value = -76 .06  (Ref, [24]). 
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Eq. (7) leads to a good dipole moment. We denote this wave function by H20(C) and it has the following 
parameters: 

Inner shell exponent, 17.31682; OH bond exponent, 0.55000; lone pair exponent, 0.54003; OH bond 
orbitals positioned at (___0.5202, 0, 0.4028) lone pair orbitals positioned at (0, +0.7140, -0.0050). 
The choice z=  -0.01 bohrs gives a wave function from which a good dipole moment can be found by 
using Eq. (10). This wave function is denoted by HzO(S ) and has the following parameters: 

Inner shell exponent, 17.31272; OH bond exponent, 0.55793; lone pair exponent, 0.53857; OH bond 
orbitals positioned at (+0.4930, 0, 0.3817); lone pair orbitals positioned at (0, +0.0143, -0.0100). 
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